Module Géomatique – Faculté des Sciences d'Orsay 2006)

Soudani Kamel (Dernière modification : Juillet

Soudani Kamel

Maître de Conférences

Laboratoire Ecologie Systématique et Evolution Département Ecophysiologie Végétale Equipe Bilan carboné et fonctionnement des Ecosystèmes UMR 8079 CNRS-Université Paris-Sud XI Université Paris-Sud XI, Bat. 362, 91405 Orsay Cedex, France. http://www.ese.u-psud.fr

Responsable du module Soudani Kamel Kamel.soudani@ese.u-psud.fr

TD – 2 : Corrections atmosphériques, géométriques et classification des images de télédétection sous ENVI

Objectifs :

1. Comprendre le processus de correction atmosphérique des images de télédétection.

2. Effectuer une correction géométrique d'une image de télédétection (rectification, registration et géoréférencement).

3. Etablir une carte d'occupation du sol : test de différentes méthodes de classification supervisée et non supervisée.

I. Correction des effets atmosphérique : cas d'une image SPOT

Le principe de correction atmosphérique d'une image de télédétection consiste à convertir les comptes numériques de l'image (niveau de gris) en luminance (w m⁻² sr⁻¹ μ m⁻¹) au niveau du capteur satellitaire et ensuite d'extraire de cette nouvelle variable les effets perturbateurs atmosphériques afin d'aboutir finalement à une mesure physique de la réflectance au niveau de la surface visée. La méthode proposée dans la suite, dite **dark object subtraction (DOS)** est celle proposée par Song et al., 2001.

La première étape consiste à convertir le niveau de gris (DC digital number) en luminance en utilisant les gains absolus fournis avec l'image SPOT (annexe). Pour chaque bande spectrale XSi (i =1, 2, 3), la conversion de DC_i en luminance L_{sat}^{i} au niveau du satellite est donnée par la relation suivante :

$$L_{sat}^{i} = \frac{DC}{G^{i}}$$
, où G^{i} est le facteur de calibration(W⁻¹ m² sr µm) pour la bande i.

Pour l'image SPOT de 10/07/1994, les G_i sont 1.753553, 1.35211 et 1.53036 pour les bandes 1,2 et 3, respectivement (voir annexe).

La deuxième étape consiste à extraire les effets atmosphériques en utilisant la relation suivante qui

donne la réflectance au niveau de la surface visée :
$$\rho^{i} = \frac{\pi (L_{sat}^{i} - L_{p}^{i})}{T_{v} (T_{z} E_{0}^{i} \cos \theta_{s} d^{2} + E_{down})}$$

Où \vec{E}_o le rayonnement équivalent exo-atmosphérique donné, pour chaque bande et pour chaque type d'instrument HRV, dans le guide d'utilisation des images SPOT (voir tableau suivant). θ_s est l'angle zénithal solaire au moment de l'acquisition de l'image. d^2 is le carré de la distance Terre-Soleil en unité astronomique (d = 1-0.01674 *cos*(0.9856 (JD-4))) où JD est le jour Julien de l'acquisition de l'image. T_v et T_z sont les transmittances de l'atmosphère dans les directions de vue et solaire, respectivement. E_{down} est le rayonnement diffus descendant. L_p^i est la contribution de l'atmosphère dans la luminance mesurée au niveau du capteur satellitaire (path radiance).

Les méthodes de corrections atmosphériques se distinguent dans la manière d'estimer L_p^i , E_{down} , T_v et T_z . La méthode DOS estime : $L_p^i = DC_{\min}^i / G^i$. DC_{\min}^i est le niveau de gris minimum observé sur l'image dans la bande spectrale i. E_{down} est supposé nul. T_z et T_v sont approximés par les angles solaire et de vue ($T_z = \cos \theta_s$ et $T_v = \cos \theta_v$). (Chavez, 1988, 1996).

Rayonnement équivalent (Solar equivalent irradiance) en W/m²/ μ m pour les instruments SPOT

	SPC	DT 1	SPOT 2		SPC	DT 3	SPC)T 4
Spectral Band	HRV 1	HRV 2	HRV 1	HRV 2	HRV 1	HRV 2	HRVIR 1	HRVIR 2
P / M	1 680	1 690	1 705	1 670	1 668	1 667	1 568	1 586
XS1	1 855	1 845	1 865	1 865	1 854	1 855	1 843	1 851
XS2	1 615	1 575	1 620	1 615	1 580	1 597	1 568	1 586
XS3	1 090	1 040	1 085	1 090	1 065	1 067	1 052	1 054
SWIR							233	240

Chavez, P.S. 1996, Image-based atmospheric corrections—revisited and revised. *Photogrammetric Engineering and Remote Sensing* 62(9): 1025-1036.

Chavez P.S., 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24, 459-479.

Song C., Woodcock C.E., Seto K.C., Lenney M. P., Macomber S.A., 2001. Classification and Change Detection Using Landsat TM Data. When and How to Correct Atmospheric Effects? Remote Sensing of Environment, 75, 230-244.

Soudani K., François C., le Maire G., Le Dantec V. & Dufrêne E. 2006 - Comparative analysis of Ikonos, SPOT and ETM+ data for Leaf Area Index estimation in temperate coniferous and deciduous forest stands. Remote Sensing of Environment, 102: 161-175.

II. Rectification, Registration et Géoréférencement d'une image de télédétection

Les images de télédétection, les photographies aériennes ou tout plan cartographique représentent un espace géographique. L'opération qui consiste à attribuer des **coordonnées cartographiques** aux pixels de l'image est appelée **géoréférencement**. L'opération qui consiste à exprimer les coordonnées d'une image dans le même référentiel d'une autre image est dite **registration**. Pour cette dernière opération, le référentiel peut être arbitraire. Au contraire, le géoréférencement d'une surface terrestre fait appel à un **système de coordonnées** lui-même rattaché à un **système de projection terrestre**. Notons que le géoréférencement proprement dit permet seulement d'exprimer les coordonnées d'une image dans un système de coordonnées cartographiques sans aucune modification de l'image. Lorsque l'image présente des distorsions telles que les photographies aériennes ou satellitaires, le géoréférencement est précédé par une opération dite de **rectification** qui permet de corriger ces distorsions. La procédure de rectification consiste en une simple conversion des coordonnées initiales de l'image en coordonnées cartographiques :

La conversion s'effectue grâce à un polynôme d'ordre n.

$$x' = a + bx_0 + cy_0 + dx_0y_0 + ex_0^2 + fy_0^2 + \dots + qx_0^i y_0^j$$
$$y' = a' + b'x_0 + c'y_0 + d'x_0y_0 + e'x_0^2 + f'y_0^2 + \dots + q'x_0^i y_0^j$$

Pour i+j≤n

x', y' sont les nouvelles coordonnées. x_0 , y_0 sont les coordonnées de l'image d'origine. Les coefficients sont des scalaires.

Pour un polynôme d'ordre 1 : les coordonnées nouvelles sont calculées selon les deux polynômes suivants :

 $x' = a + bx_0 + cy_0$ $y' = a' + b' x_0 + c' y_0$

Afin de déterminer les coefficients du polynôme, il faut définir un système d'équations reliant des points homologues de coordonnées connues dans les deux systèmes de coordonnées : ces points sont dits points d'amers ou de contrôle (ground control points GCP). Par exemple pour un polynôme d'ordre 1, il faut un système de 6 équations pour déterminer les coefficients a, b, c, a', b' et c'. Il suffit donc de trois points d'amers (3 équations pour les coordonnées x' et 3 pour les coordonnées y'). En $\binom{n+1}{n+2}$

règle générale, il faut $\frac{(n+1)(n+2)}{2}$ points de contrôle pour un polynôme d'ordre n.

Procédure de correction géométrique sous ENVI

Démarrer / Programmes / Research System ENVI 3.5 / ENVI

Outils et méthodes de traitement d'images sous ENVI

🕼 File /Open image file

Cuvrir l'image : EX_SPOT_100794_GEOCOR.img.

L'image a été corrigée géométriquement et référencée dans le système de coordonnées Lambert 1. On utilisera cette image comme étant l'image de référence.

Provide the second seco

Sur l'image EX_SPOT_100794_GEOCOR.img et dans la fenêtre Cursol Location/Value figurent les informations de géoréférencement de cette image. Aucun système de coordonnées est attaché à l'image EX_SPOT_2700701.img.

Dans la suite de ce TD, on va rectifier l'image EX_SPOT_2700701.img et lui attribuer un système de coordonnées géographique.

Sous ENVI

NVI										
Basic Tools	Classification	Transform	Filter	Spectral	Мар	Vector	Topographic	Radar	Windo	ow Help
					Re	gistratior	n		•	Select GCPs: Ima
					Orl	thorectifi	ication		•	Select GCPs: Ima
					Mo	isaicking			<u> </u>	Warp from GCPs
					Ge	oreferen	ice from Input	Geometr	y 🕨	Warp from GCPs
					Ge	oreferen	ice SeaWiFS		- • T	
					Ge	oreferen	ice AVHRR		•	
					Cu	stomize l	Map Projection	s		
					Co	nvert Ma	p Projection			
					Lay	yer Stack	king			
					Ma	n Coordi	nate Converte	r		
					AS	CII Coor	dinate Converte	sion		
					Me	rae Old '	'map_proj.txt"	File		
					GP	S-Link				
	NVI Basic Tools	NVI Basic Tools Classification	NVI Basic Tools Classification Transform	NVI Basic Tools Classification Transform Filter	NYI Basic Tools Classification Transform Filter Spectral	NVI Basic Tools Classification Transform Filter Spectral Map Re Or Mo Ge Ge Ge Ge Cu Cu Cu Co Lay Ma AS Me GP	NVI Basic Tools Classification Transform Filter Spectral Map Vector Registration Orthorectif Mosaicking Georeferen Georeferen Customize I Convert Ma Layer Stack Map Coordi ASCII Coor Merge Old 1 GPS-Link	NVI Basic Tools Classification Transform Filter Spectral Map Vector Topographic Registration Orthorectification Mosaicking Georeference from Input Georeference SeaWiFS Georeference AVHRR Customize Map Projection Layer Stacking Map Coordinate Converte ASCII Coordinate Converte ASCII Coordinate Converte Marge Old "map_proj.txt" GPS-Link	NVI Basic Tools Classification Transform Filter Spectral Map Vector Topographic Radar Registration Orthorectification Mosaicking Georeference from Input Geometric Georeference SeaWiFS Georeference AVHRR Customize Map Projections Convert Map Projection Layer Stacking Map Coordinate Converter ASCII Coordinate Converter ASCII Coordinate Conversion Merge Old "map_proj.txt" File GPS-Link	NVI Basic Tools Classification Transform Filter Spectral Map Vector Topographic Radar Window Orthorectification Orthorectification Mosaicking Georeference from Input Geometry Georeference SeaWiFS Georeference AVHRR Customize Map Projections Convert Map Projection Layer Stacking Map Coordinate Converter ASCII Coordinate Conversion Merge Old "map_proj.txt" File GPS-Link

Le **display #1** : fenêtre 1 contient l'image géoréférencée considérée sous ENVI comme étant la carte Map. Le **display #2** contient l'image à corriger.

Dans select Registration projection : choisissez France Zone I nord. X pixel size = 20 m

Y pixel size = 20 m(Résolution spatiale de l'image SPOT).

Sur

En appuyant sur OK, la fenêtre suivante s'ouvre invitant à sélectionner les points de calage ou points d'amers. Le principe consiste à sélectionner sur les deux images des points homologues :

des points de calage Ground Control Points l'image à et à l'aide de choisissez un image Х,

point image Y visible puis cliquez sur le bouton gauche. Les Coordonnées X, Y sont mises à jour automatiquement dans la fenêtre Ground Control Points Selection (GCPS). Ensuite et à l'aide du Cursor Location/Value, notez les coordonnées N (North), E (East) du même point sur la carte et introduisez les valeurs correspondantes N, E dans la fenêtre GCPS puis Add Point.

Image de Référence (Map)

mage à corriger

La répartition des points homologues doit être homogène sur toute l'image. Leur nombre dépend du degré du polynôme de transformation à choisir. Au minimum, il faut 3 points homologues pour un polynôme de degré 1.

Une fois, les points sont sélectionnés, cliquez sur le bouton Show List de la fenêtre GCPS.

🗊 Imag	e to Map GCF	List								
File Opt	tions									
	MapX	Map Y	lmage X	Image Y	Predict X	Predict Y	Error X	Error Y	RMS	
#1+	626352.83	1077394.63	2609.25	1742.50	2608.4685	1743.1443	-0.7815	0.6443	1.0128	▲
#2+	626392.83	1065134.00	2786.00	2330.00	2786.4431	2329.6347	0.4431	-0.3653	0.5743	
#3+	622372.83	1092394.61	2201.50	1082.00	2201.7734	1081.7746	0.2734	-0.2254	0.3544	
#4+	639872.83	1094294.63	3016.00	741.00	3016.0745	740.9386	0.0745	-0.0614	0.0965	
#5+	619732.83	1069814.63	2402.25	2201.75	2402.2404	2201.7579	-0.0096	0.0079	0.0124	
Goto	Goto On/Off Delete Update Hide List									

RMS : Root Mean Square

Le RMS mesure l'erreur de localisation d'un point en utilisant le polynôme de transformation. Si X_p est la coordonnée prédite et X est la coordonnée vraie, l'erreur est : $X_p - X$. En Y, l'erreur est Y_p -Y. Le

RMS pour ce point est donné par la relation suivante : $RMS = \sqrt{(X_p - X)^2 + (Y_p - Y)^2}$. Le RMS total sur l'angemble de l'image est estevilé comme étant le moveme des PMS lessure

l'ensemble de l'image est calculé comme étant la moyenne des RMS locaux.

Dans la fenêtre GCPS- menu File – Save GCPs w/Map Coords – Donnez le nom GCP_260701.pts

Utilisez ensuite NotePad pour lire le fichier GCP_260701.pts. Ce fichier est un fichier texte dont le format est le suivant :

; ENVI Image to Map GCP File 50.395912, Nouvelle Triangulation Francaise IGN, France Zone I nord, units=Meters} ; warp file: D:\TELEDEC_ECO2\EX_SPOT_260701 ; Map (x,y), Image (x,y); 626352.8300 1077394.6300 2609.250000 1742.500000 1065134.0000 2786.000000 2330.000000 626392.8300 622372.8300 1092394.6100 2201.500000 1082.000000 639872.8300 1094294.6300 3016.000000 741.000000 619732.8300 1069814.6300 2402.250000 2201.750000

Rectification et Géoréférencement de l'image EX SPOT-260701.img

🖙 Dans la fenêtre GCPS- options – Warp File

Ground Control Points Selection	🗊 Input Warp Image	×
File Options Help Image X 2711.00 € Datum: Nouvelle Triangulation Francaise Image X 626392.830 E Change Proj 1065134.000 N Units: Meters Add Point Number of Selected Points: 5	Select Input File: File Information: File DCT_ED2EC_ED2EK_SPDT_26070 Dms: 1234 x1785 x 3 [BS0] State: [Byte] 6.334 A95 bytes. [Byte] 0.634 A95 bytes. File Type: EVM Standard Sensor Type SPOT Byte Order: Host [Intel] Projection: None Wavelength: None Upper Left Correr: 1899.652 Description: Tile Resize Result, x resize factor: 1.000000, Ure 0ict 29 14.41:20 2002]	
	Spatial Subset Full Scene Select By File Spectral Subset 3/3 Bands OK Cancel Previous Open File Open Spec Lib Restore ROIs	

1	Registration Parameters					
	Warp Method Polynomial Degree 1					
	Resampling Nearest Neighbor					
	Background 0.000					
	Registration Output Image:					
	Upper Left Corner ; (608663.40,1102329.85) Pixel Size (Meters): 20.00,20.00 Image Size (Meters): 34038.46 x 41294.72 Image Size (Pixels): 1702 x 2065					
	Change Output Parameters					
	Output Result to 💿 File 🔘 Memory					
	Enter Output Filename Choose					
	D:\TELEDEC_ECO2\EXT_SPOT_260701_GEOCC					
	OK Queue Cancel					

Polynome : degré 1 :

 $x' = a + bx_0 + cy_0$ $y' = a' + b'x_0 + c'y_0$

x' et y' sont les nouvelles coordonnées du point (x_0,y_0) de l'image à corriger.

Resampling (réechantillonnage): Nearest Neighbor (plus proche voisin)

Dans Enter Output Filename – cliquez sur Choose et donnez le nom EXT_SPOT_260701_GEOCOR.img à la nouvelle image corrigée.

L'image EXT_SPOT_260701_GEOCOR.img est ajoutée à la liste des images disponibles dans la boîte : **Available bands list**

Fermez les autres fenêtres pour ne laisser que la boîte de dialogue **Available bands list** et l'image EXT_SPOT_100794_GEOCOR.img dans le display 1, puis afficher une composition colorée de l'image EXT_SPOT_260701_GEOCOR.img dans <u>new display</u> (Display 2).

Link displays pour lier les deux fenêtres afin de vérifier que l'opération de rectification-géoréférencement est bien effectuée. Vous pouvez aussi utiliser le Cursor Location/Value – menu Tool de l'une des fenêtres.

III. Classification des images de télédétection

Dans cette partie, on testera les différentes méthodes de classification des images. On commencera par l'image EXT_SPOT_100794_GEOCOR.img.

Classification non supervisée

Choix du nombre de classes pour une cartographie de l'occupation du sol : l'examen de l'image permet de détecter les classes suivantes.

Sols nus et autres minéraux (couleur bleu clair) Sols faiblement couverts (bleu-vert) Cultures et prairies (rose) Surfaces d'eau libre (bleu ou noir selon essentiellement la profondeur et la nature des fonds). Forêts Feuillues (rouge sombre). Forêts résineuses (rouge-noir).

Fermer la composition colorée EXT_SPOT_260701_GEOCOR.img. Dans le menu principal ENVI – Classification – unsupervised - Isodata.

ISODATA Parameters	X
Number of Classes: Min 5 Max 10 Maximum Iterations 10 Change Threshold & (0-100) 5.00 Minimum # Pixel in Class 1 Maximum Class Stdy 1.000	Maximum Stdev From Mean Maximum Distance Error Output Result to File Memory Enter Output Filename Choose
Minimum Class Distance 5.000 Maximum # Merge Pairs 2	

Nombre de classes : 5 à 10 Seuil ou critère d'arrêt : 5%

Le seuil de 5% signifie que la classification par la méthode Isodata est terminée lorsque un nombre de pixels \leq 5% change de classe entre les itérations n-1 et n. Ceci signifie qu'un nombre d'itérations supérieur n'apporte qu'une légère amélioration de la classification finale. Plus ce seuil est petit plus la classification est précise.

Nombre d'itérations : 10

Donnez le nom Class_NonSup_KM_100794.img à l'image classée. Laissez les autres options par défaut.

Affichez ensuite les deux images et utilisez l'outil **Tools – Link** Displays pour déterminer la correspondance entre les couleurs et les classes.

Dans la fenêtre montrant l'image classée, cliquez sur Tools – Color mapping – class color mapping. Affectez ensuite des noms aux classes.

Important !!!!!!

Si une classe est rencontrée une deuxième fois, ajoutez à la classe un autre indicateur : Par exemple classe *sols nus et autres minéraux* lorsque la classe est rencontrée une première fois, ensuite *sols nus et autres minéraux_1* lorsqu'elle est rencontrée une deuxième fois.

📕 #1 Class Color Mapping	_D×
File Options	
Selected Classes:	
Class 1	
Class 2	
Class 3 Class 4	
Class 5	
Class 0 Class 7	
Class 8 Class 9	
Class 10	
Class Name:	
Unclassified	
System RGB	V
Red	
Green	
Blue	

<u> </u>	I Class Color Mapping	
File	Options	
	Save Changes	
Unc	Reset Color Mapping	
Bad	kground	
Surf	aces d'eau libre	
Foré	èts résineuses	
Foré	èts feuillues	
Sols	ures et prairies : faiblement couverts	
Sols	nus et autres minéraux_1	
Sols	s faiblement couverts_1	
Sols	staiblement couverts_2	
	Class Name:	
Sols	faiblement couverts_2	
Sys	tem RGB	V
1		
	1	▶ 255 ▲
B	_ ed	
		127 🖨
	reen	
BI	ue	

Une fois, l'affectation est terminée, **options – Save changes** pour valider.

Combinaison des classes

Dans le menu principal ENVI – Classification – Cliquez sur Post Classification puis combine classes.

Combine Classes Parameters						
Select Input Class Forêts feuillues Cultures et prairies Sols faiblement couve						
Input Class						
Add Combination Combined Classes						
Background -> Unclassified Sols nus et autres minéraux_1 -> Sols nus et autres Sols faiblement couverts_1 -> Sols faiblement couve Sols faiblement couverts_2 -> Sols faiblement couve						
OK Cancel						

Background \rightarrow Unclassified Sols nus et autres minéraux_1 \rightarrow Sols nus et autres minéraux. Sols peu couverts_1 \rightarrow Sols peu couverts. Sols peu couverts_2 \rightarrow Sols peu couverts.

Une fois terminée, cliquez sur OK
Attention : Remove Emply classes (vides) : Yes

Combine Classes Output
Remove Empty Classes ? Yes
Output Result to 💿 File 🔿 Memory
Enter Output Filename Choose
D:\TELEDEC_ECO2\N_Class_NonSup_KM_1007\$
OK Queue Cancel

La nouvelle classification est la suivante :

I → Dans le menu principal ENVI – Classification – Cliquez sur Post Classification puis class statistics pour claculer les statistiques des classes.

Classification Supervisée

Fermez toutes les images pour ne laisser que l'image EXT_SPOT_100794.img.

La classification supervisée se déroule en deux étapes :

- 1- La première étape consiste à sélectionner des zones de l'image dont on connaît la vraie occupation du sol. Ces zones sont appelées régions d'intérêt **Regions of interest** sous ENVI.
- 2- Utiliser ensuite ces zones comme références à la généralisation sur l'ensemble de l'image.

1. Choix des zones d'intérêt

Menu Tools – Region of Interest – ROI Tool.

SOUDANI Kamel - Faculté des Sciences d'Orsay - Université Paris Sud XI (2006-2007)

Dans la boîte de dialogue ROI Tool – Validez l'option Off. Ensuite, Affichez sur le même écran, la fenêtre principale et le zoom. Choisissez ensuite une zone homogène. Utilisez ensuite l'outil Edit dans ROI Tool pour affecter un nom à cette zone test. Cliquez ensuite sur zoom dans la fenêtre ROI Tool et commencez alors la délimitation de la zone test.

- Utiliser le bouton gauche de la souris pour entourer la zone test.
- Cliquez deux fois sur le bouton droit de la souris pour terminer.

Refaites cette même opération pour les autres zones de référence.

Délimitez les classes suivantes :

🖷 #1 ROI Tool	🗐 #1 Scroll (0.1550)	<u>_ ×</u>
File ROI_Type Options Help		
Window: O Image O Scroll O Zoom © Off		
Available Regions Of Interest:		
Sols nus et autres minéraux [Coral] 2159 points Sols peu couverts [Maroon] 4606 points Surfaces d'eau libre [Blue] 1456 points Forêts feuilles adultes [Red] 5615 points Forêts feuilles jeunes ou régénération [Red3] 1563 points Forêts résineuses [Purple] 2334 points Cultures et prairies [Chartreuse] 4958 points		
New Region Edit Erase Delete		
Goto Stats Mean Grow		

Dans la boîte de dialogue ROI Tool – cliquez sur Off pour arrêter les sélections. Ensuite dans le menu File – Save ROIs – Select All Items – Choose et donnez un nom au fichier qui contiendra les différentes régions sélectionnées.

Statistiques sur les ROIs

Signatures spectrales des ROIs

🕼 Dans la boîte de dialogue ROI Tool – Menu Options – Mean for All regions

- Cliquez à l'aide du bouton droit de la souris à l'intérieur du graphique pour afficher la légende.

- Utilisez le menu Edit pour modifier les paramètres d'affichage du graphique et des données.

Séparabilité des ROIs

🕼 Dans la boîte de dialogue ROI Tool – Menu Options – Compute ROIs separability

Deux méthodes de mesure de la séparabilité entre les différentes classes. Pour plus de détails sur la formulation mathématique des ces méthodes : Richards, J. A., 1986, "Remote Sensing Digital Image Analysis". Springer-Verlag, Berlin, Heidelburg, New York, London, Paris, Tokyo, pp. 206-225.

Retenons seulement :

Les deux méthodes de calcul de la distance spectrale interclasses fournissent des statistiques qui varient entre 0 et 2.

0.0 < x < 1.0 (séparabilité très faible, 0 implique une confusion totale entre deux classes) 1.0 < x < 1.9 (séparabilité faible) 1.9 < x < 2.0 (bonne séparabilité, 2 séparabilité parfaite avec aucun risque de confusion).

Une classe dont la séparabilité par rapport à une autre est faible doit être soit confondue avec celle-ci ou re-définie.

Input File: EXT_SPOT_100794_GEOCOR ROI Name: (Jeffries-Matusita, Transformed Divergence)

Sols nus et autres minéraux:

Sols peu couverts: (1.92552335 1.99804585) Surfaces d'eau libre: (1.99999957 2.00000000) Forêts feuillues adultes: (2.00000000 2.00000000) Forêts feuilles jeunes ou régénération: (2.00000000 2.00000000) Forêts résineuses: (1.99999999 2.00000000) Cultures et prairies: (1.99999992 2.00000000)

Sols peu couverts:

Sols nus et autres minéraux: (1.92552335 1.99804585) Surfaces d'eau libre: (1.99998709 2.00000000) Forêts feuillues adultes: (2.00000000 2.00000000) Forêts feuilles jeunes ou régénération: (2.00000000 2.00000000) Forêts résineuses: (1.99994334 1.99999999) Cultures et prairies: (1.99988754 2.00000000)

Surfaces d'eau libre:

Sols nus et autres minéraux: (1.99999957 2.0000000) Sols peu couverts: (1.99998709 2.0000000) Forêts feuillues adultes: (2.0000000 2.0000000) Forêts feuilles jeunes ou régénération: (2.00000000 2.0000000) Forêts résineuses: (1.99810628 2.0000000) Cultures et prairies: (1.99999848 2.0000000)

Forêts feuillues adultes:

Sols nus et autres minéraux: (2.0000000 2.0000000) Sols peu couverts: (2.00000000 2.0000000) Surfaces d'eau libre: (2.00000000 2.00000000) Forêts feuilles jeunes ou régénération: (1.44500464 1.53203503) Forêts résineuses: (1.99913705 1.99999935) Cultures et prairies: (1.97832597 2.00000000)

Forêts feuilles jeunes ou régénération: Sols nus et autres minéraux: (2.00000000 2.0000000) Sols peu couverts: (2.0000000 2.0000000) Surfaces d'eau libre: (2.00000000 2.00000000) Forêts feuillues adultes: (1.44500464 1.53203503) Forêts résineuses: (1.99959555 1.99999936) Cultures et prairies: (1.87289769 1.99768836)

Forêts résineuses:

Sols nus et autres minéraux: (1.99999999 2.00000000) Sols peu couverts: (1.99994334 1.99999999) Surfaces d'eau libre: (1.99810628 2.00000000) Forêts feuillues adultes: (1.99913705 1.99999935) Forêts feuilles jeunes ou régénération: (1.99959555 1.99999936) Cultures et prairies: (1.99982318 2.0000000)

Cultures et prairies:

Sols nus et autres minéraux: (1.99999992 2.0000000) Sols peu couverts: (1.99988754 2.00000000) Surfaces d'eau libre: (1.99999848 2.00000000) Forêts feuillues adultes: (1.97832597 2.00000000) Forêts feuilles jeunes ou régénération: (1.87289769 1.99768836) Forêts résineuses: (1.99982318 2.00000000)

Pair Separation (least to most);

Forêts feuillues adultes and Forêts feuilles jeunes ou régénération - 1.44500464 Forêts feuilles jeunes ou régénération and Cultures et prairies - 1.87289769 Sols nus et autres minéraux and Sols peu couverts - 1.92552335 Forêts feuillues adultes and Cultures et prairies - 1.97832597 Surfaces d'eau libre and Forêts résineuses - 1.99810628 Forêts feuillues adultes and Forêts résineuses - 1.99913705 Forêts feuilles jeunes ou régénération and Forêts résineuses - 1.99959555 Forêts résineuses and Cultures et prairies - 1.99982318 Sols peu couverts and Cultures et prairies - 1.99988754 Sols peu couverts and Forêts résineuses - 1.99994334 Sols peu couverts and Surfaces d'eau libre - 1.99998709 Surfaces d'eau libre and Cultures et prairies - 1.99999848 Sols nus et autres minéraux and Surfaces d'eau libre - 1.99999957 Sols nus et autres minéraux and Cultures et prairies - 1.99999992 Sols nus et autres minéraux and Forêts résineuses - 1.99999999 Surfaces d'eau libre and Forêts feuilles jeunes ou régénération - 2.00000000 Sols peu couverts and Forêts feuilles jeunes ou régénération - 2.00000000 Surfaces d'eau libre and Forêts feuillues adultes - 2.00000000 Sols peu couverts and Forêts feuillues adultes - 2.00000000 Sols nus et autres minéraux and Forêts feuilles jeunes ou régénération - 2.00000000 Sols nus et autres minéraux and Forêts feuillues adultes - 2.00000000

Classification supervisée

On testera les méthodes suivantes

Minimum Distance Mahalanobis Distance Parallelepiped Maximum likelihood

Minimum Distance

Menu principal ENVI- Classification- Supervised – Minimum Distance.

Classification Input File	X	ß	Mask Definition	<
Select Input File: EXT_SPOT_100794_GEOCOR Spatial Subset Full Scene Spectral Subset Spectral Subset Select Mask Band	File Information: File: D:\TELEDEC_EC02\EXT_SPOT_1007! Dims: 1742 x 1995 x 3 (BSQ) Size: (Byte) 10,425,870 bytes. File Type : ENVI Standard Sensor Type: SPOT Byte Order : Host (Intel) Projection : France Zone I nord Datum : Nouvelle Triangulation Francaise X Pixel : 20.00000 Meters Y Pixel : 20.00000 Meters Wavelength : None Upper Left Corner: 1,1 Description: Registration Result.		Options Selected Attributes for Mask: Delete Item Clear All Items Output Result to File Memory Enter Output Filename Choose Compress OK Cancel	
OK Cancel Previous Open File.	. Open Spec Lib Restore ROIs		Selected Band: Warp (Resize (Band 1:SPOT_XS_100794):E) Select New Input Band Band Min Value 1 Band Max Value 255 OK	

Sélectionnez l'image EXT_SPOT_100794_GEOCOR.img. Dans Select Mask Band – Build Mask – Options – Import Band Data Range puis donnez les valeurs Band Min Value = 1 et Band Max Value = 255. La valeur zéro est exclue de la classification. Donnez enfin un nom au masque crée (Enter output Filename – Choose – mask_Img_100794.img).

Select Classes from Regions: Sold run et autric minifasu (2014) 2159 point Sold per covarder (Marcon) 4056 point Sold per covarder (Marcon) 4056 point Sold per covarder (Marcon) 4056 points Prote Fruites praties (Prote) 2575 points Fruites realines adults (Prote) 2575 points Cultures et praties (Chartesuel 4559 points Cultures et praties (Chartesuel 4559 points Select All Items Clear All Items Set Max stdev from Mean © None © Single Value © Multiple Values Max stdev from Mean	Output Result to File C Memory Enter Output Class Filename Choose C Compress D:\TELEDEC_EC02\Mn_Distance_100794 Output Rule Images ?No 11
Set Max Distance Error C None C Single Value C Multiple Values Max Distance Error DK Queue Cancel Help	

Affichez ensuite les deux images, l'image classée et la composition colorée EXT_SPOT_100794_GEOCOR.img et utilisez l'outil **Tools – Link** Displays pour vérifier les résultats de la classification.

Maximum likelihood

Select Classes from Regions: Sols nus et autres minéraux [Coral] 2159 point Sols peu couverts [Maroon] 4606 points Surfaces d'eau libre [Blue] 1456 points Forêts feuilles adultes [Red] 5615 points Forêts feuilles jeunes ou régénération [Red3] Forêts résineuses [Purple] 2334 points Cultures et prairies [Chartreuse] 4958 points Image: Image: Im	Output Result to File Memory Enter Output Class Filename Choose Compress D:\TELEDEC_ECO2\maxi_vra_100794 Output Rule Images ? No
Set Probability Threshold O None O Single Value O Multiple Values Probability Threshold 0.95 OK Queue Cancel Help	

Testez cette méthode avec les valeurs de probabilité suivantes : 0, 0.5, 1.

./.