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Summary

Although inland water bodies are more heterogene-
ous and sensitive to environmental variation than
oceans, the diversity of small protists in these eco-
systems is much less well known. Some molecular
surveys of lakes exist, but little information is avail-
able from smaller, shallower and often ephemeral
freshwater systems, despite their global distribution
and ecological importance. We carried out a compara-
tive study based on massive pyrosequencing of
amplified 18S rRNA gene fragments of protists in the
0.2-5 pm size range in one brook and four shallow
ponds located in the Natural Regional Park of the
Chevreuse Valley, France. Our study revealed a wide
diversity of small protists, with 812 stringently
defined operational taxonomic units (OTUs) belong-
ing to the recognized eukaryotic supergroups (SAR —
Stramenopiles, Alveolata, Rhizaria — Archaeplastida,
Excavata, Amoebozoa, Opisthokonta) and to groups
of unresolved phylogenetic position (Cryptophyta,
Haptophyta, Centrohelida, Katablepharida, Telone-
mida, Apusozoa). Some OTUs represented deep-
branching lineages (Cryptomycota, Aphelida,
Colpodellida, Tremulida, clade-10 Cercozoa, HAP-1
Haptophyta). We identified several lineages previ-
ously thought to be marine including, in addition to
MAST-2 and MAST-12, already detected in freshwater,
MAST-3 and possibly MAST-6. Protist community
structures were different in the five ecosystems.
These differences did not correlate with geographical
distances, but seemed to be influenced by environ-
mental parameters.
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Introduction

Aquatic ecosystems occupy most of the Earth surface.
Oceans alone cover around 71% of that surface
(Costanza, 1999). Lakes, ponds and reservoirs cover
more than 3% (nearly 4.5 million km?) of non-oceanic
regions (Downing et al., 2006). Although comparatively
smaller, these freshwater systems offer a large array and
diversity of ecological niches including various trophic
levels, light accessibility, temperature and oxygen con-
centrations. This is especially true for small and shallow
lentic inland ecosystems (sizes from 0.001 to 0.1 km?),
which are widespread, varied and numerous, correspond-
ing to more than 99% of the total number of lakes on Earth
(Downing et al., 2006). Microbial communities dominate
aquatic ecosystems and their activity has profound impact
at global scales, being largely implicated in carbon fixation
(Li, 1994; Jardillier et al., 2010) and climate regulation
(Simo6, 2001). Within these communities, microbial
eukaryotes play key roles in nutrient cycling acting as
photosynthesizers, heterotrophs (predators, parasites) or
mixotrophs (Caron, 1994; Zubkov and Tarran, 2008;
Jardillier et al., 2010; Massana, 2011).

Small eukaryotes (< 20 um) have been known to consti-
tute a non-negligible part of aquatic microbial communities
in both freshwater and marine systems for a long time
(Johnson and Sieburth, 1982; Corpe and Jensen, 1992).
Based on their cell size, small protists were initially classi-
fied in nanoeukaryotes (cells between 2 and 20 um in
diameter) and picoeukaryotes (cells <2 um). In the last
two centuries, many small eukaryotic species have been
described, including phototrophs such as prasinophytes
and other chlorophytes (Knight-Jones and Walne, 1951;
Stockner, 1988; Guillou et al., 1999), which suggested a
potentially significant role in primary production (Johnson
and Sieburth, 1982), but also heterotrophs (Fenchel, 1982;
Patterson and Larsen, 1991). Indeed, the ecological impor-
tance of heterotrophic nanoflagellates as predators has
long been acknowledged (Fenchel, 1982; Wright and
Coffin, 1984). However, being too small to show easily
identifiable, unambiguous morphological differences, their
true diversity remained largely inaccessible and their tax-
onomy poorly studied or oversimplified (many of these tiny
protists were simply classed as incertae sedis).
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In the past 15 years, the use of molecular methods
based on 18S rRNA gene analysis has largely overcome
that problem, allowing studying the phylogenetic diversity
and distribution of small protists at unprecedented scales.
Most such studies largely explored oceanic systems,
including surface waters (Diez et al., 2001; Moon-van der
Staay et al.,, 2001), the deep sea (Lopez-Garcia et al.,
2001) and the coastal regions (Massana et al., 2004a;
Romari and Vaulot, 2004; Cheung etal., 2010). They
revealed a huge protist diversity encompassing members
of all recognized eukaryotic supergroups (SAR -
Stramenopiles, Alveolata, Rhizaria — Archaeplastida,
Excavata, Amoebozoa and Opisthokonta) as well as lin-
eages of uncertain position in the eukaryotic tree, such as
Haptophyta, Cryptophyta or Picozoa (Lépez-Garcia and
Moreira, 2008; Massana, 2011; Seenivasan et al., 2013;
Moreira and Lopez-Garcia, 2014). Molecular surveys also
allowed the discovery of lineages previously unknown in
spite of their abundance, such as new clades affiliated
to alveolates (Groups | and l1l), which turned out to be
members of the classical Syndiniales (Groisillier et al.,
2006; Harada etal.,, 2007; Guillou etal., 2008) and
stramenopiles (the MAST clades, for marine strameno-
piles) (Diez etal., 2001; Loépez-Garcia etal., 2001;
Moon-van der Staay etal., 2001; Stoeck et al., 2003;
Massana et al., 2004b). Thought for a long time to be
exclusively marine, the MAST groups remain poorly
known. In a few cases a correspondence has been found
between particular organisms and their environmental
sequences (e.g. the colonial protist Solenicola setigera
and the MAST-3; Gomez et al., 2011). However, many
other MAST lineages have not yet been linked to any
cultured or described organisms (Massana et al., 2014),
even though fluorescent in situ hybridization labelling has
provided some hints on their morphology, life style and
ecology (Massana et al., 2002; 2006).

The molecular exploration of very small protists in
freshwater began slightly later than in the oceans and
also revealed a large diversity (Lefranc and Thénot,
2005; Richards, 2005; Slapeta etal, 2005). In lakes,
alveolates (especially ciliates and Perkinsozoa, by con-
trast to the Syndiniales-Duboscquellids-dinoflagellate
dominance in marine systems), stramenopiles, crypto-
phytes and fungi were found to be abundant, but protists
belonging to the Archaeplastida, Rhizaria and Cercozoa
or groups of uncertain affiliation were also diverse
(Lefranc and Thénot, 2005; élapeta et al., 2005; Lepéere
etal., 2008; Zhao et al., 2011; Mangot etal., 2012). In
some cases, a significant part of the detected diversity
was composed only of environmental sequences without
known close relatives in databases (Lefévre et al., 2008;
Mangot et al.,, 2012; Triadé-Margarit and Casamayor,
2012). Some groups were observed in both oceans and
freshwater systems whereas others seem, according to

current knowledge, to be specific to marine (e.g.
Syndiniales; Guillou etal.,, 2008) or freshwater (e.g.
HAP-1 lineage of haptophytes; Slapeta etal., 2005;
Shalchian-Tabrizi et al., 2011) environments. Even within
lineages present both in marine and freshwater systems,
18S rRNA sequences obtained from freshwater samples
often form phylogenetic clades distinct from those of
oceanic sequences, suggesting a limited number of,
mostly ancient, freshwater colonization events followed
by radiations (Logares etal., 2009). That scarcity of
marine-freshwater transitions has been observed for
many small eukaryote groups such as the perkinsids
(Brate et al., 2010), haptophytes (Shalchian-Tabrizi et al.,
2011; Simon et al., 2013) or MAST lineages (Massana
etal.,, 2014), and could be explained by the difficulty
of crossing the salinity barrier (Logares etal., 2009).
However, freshwater aquatic systems remain largely
understudied and massive high-throughput sequencing
techniques have been applied to very few among them.
Therefore, it might be possible that failure to detect some
of these lineages is due to undersampling. Furthermore,
the vast majority of protist molecular diversity studies in
freshwater have been conducted in lakes (e.g. Richards,
2005, Lepere and Boucher, 2006; Lepére et al., 2008).
However, smaller systems like ponds or brooks have
been overlooked, despite their abundance, distribution
and ecological importance. Yet, previous analyses
suggest that they host several lineages undetected in
marine environments or lakes (Slapeta etal., 2005;
Simon etal.,, 2013). In addition, because they are
shallow and small, this kind of freshwater systems may
display very different local physico-chemical conditions
and, hence, they constitute ideal models to test whether
local environmental selection is more influential than
geographic distance in determining community composi-
tion, which remains controversial (Green etal., 2004;
Martiny et al., 2006). A recent study on lakes suggest
that geographic distance might be important to explain
protist biogeography (Lepére etal, 2013), but lakes
have much more buffering capacity than small shallow
systems.

In this work, we have investigated the diversity of small
eukaryotes (essentially the 0.2—-5 um cell size fraction) in
a set of shallow freshwater environments by amplification
of 18S rRNA gene fragments and direct high-throughput
454-pyrosequencing. We selected one brook and four
ponds located in the same geographic area (the Natural
Regional Park of the Chevreuse Valley, France) but dif-
fering in size, depth and physico-chemical conditions. The
objectives of our work were threefold: (i) describing protist
diversity at unprecedented depth in this kind of habitats,
(i) checking whether increasing sequence depth leads to
the discovery in freshwater systems of eukaryotes previ-
ously thought to be exclusively marine and (iii) testing
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which parameters (geographical distance versus physico-
chemical characteristics) determine eukaryotic microbial
community structure.

Results

To study protist diversity in five small and shallow fresh-
water ecosystems, we selected one brook and four
shallow ponds in the Natural Regional Park characterized
by different physico-chemical parameters and trophic
status (Table 1; Fig. S1). The Mare Gabard is a small pond
located in the middle of the forest (Fig. S1). It smelled
strongly of H.S when sediments were stirred and had high
phosphate concentrations (0.15 mg I-') but the lowest pH,
conductivity and TDS (total dissolved solids) values. Saint
Robert pond is the most anthropized system selected
because of its location in a hamlet (Fig. S1). It contained
very high ammonia (1.22 mg I") and, to a lesser extent,
also nitrite concentrations (Table 1, Fig. 1), likely influ-
enced by the permanent presence of a sizeable duck
population. La Claye pond is part of a complex of several
ponds on ancient peat bog substrate, with a dense popu-
lation of eagle ferns in the surroundings. Lying on acidic
and organic-rich soils, it was characterized by high
concentrations of dissolved organic carbon (DOC;
36.3 mg I"'). The Etang des Vallées is a nearly 1.5 m deep
pond and, contrary to other sampled systems, was super-
saturated in oxygen (116.8%; Table 1). It also had high
temperature at the time of sampling (13.1°C), and high
concentrations of nitrate (5.1 mg I-') as compared with the
other systems. The Ru Sainte Anne is the brook and had
the highest amounts of total dissolved solids (746 mg I")
possibly due to sediment input in a very shallow (~ 10 cm)
system of running waters (Table 1). Principal component
analysis (PCA) of the different physico-chemical param-
eters measured showed that, despite their close proximity
(distances between these systems varied from 2 to 9 km;
Fig. S1), the ponds and brook were clearly distinct from
each other (Fig. 1). This made of this set of shallow aquatic
ecosystems a good model to study whether geographic
proximity is more influential than physico-chemical param-
eters in determining community composition.

Overall protist community composition

The composition of protist communities was estimated for
the five selected shallow freshwater systems based on
454-pyrosequenced 18S rDNA fragments amplified from
DNA of plankton of the 0.2-5 um cell diameter fraction. In
addition, protist diversity in the size fraction 5-30 um was
studied for the largest sampled ecosystem, the Etang des
Vallées. Replicate samples were included in all cases. We
described protist diversity in these systems from a total of
146 549 quality-filtered reads using highly stringent crite-
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ria to avoid sequence artefacts and chimeras. The reads
from the 12 different samples (the 0.2-5 um cell fraction
of five systems with replicas plus the two replicas of the
5-30 um for the Etang des Vallées) were treated together
in order to define operational taxonomic units (OTUs) that
could be fully compared among samples. All those
sequences grouped in 812 OTUs defined using a cut-off
value of 98% sequence identity. From these, 768 OTUs
(128 661 reads) were detected at least in the 0.2—5 um
size fraction, the remaining 44 OTUs corresponding to
protists found only in the larger 5-30 um at the Etang de
Vallées (Table 1). The different OTUs were then assigned
to known taxonomic groups based on sequence similarity,
which revealed a wide phylogenetic diversity of protists in
general and of small eukaryotes in particular. Our strin-
gently defined OTUs affiliated to the major recognized
eukaryotic supergroups SAR (Stramenopiles, Alveolata,
Rhizaria), Archaeplastida, Excavata, Amoebozoa and
Opisthokonta (Lopez-Garcia and Moreira, 2008; Adl
etal, 2012) and to several lineages of unresolved
phylogenetic position such as Cryptophyta, Haptophyta
and Apusozoa (Fig. 2).

To evaluate the reliability of the community composition
determined for each ecosystem at this stage, we com-
pared the pairwise Bray—Curtis distances between the
two replicates for each ecosystem. These were very small
(0.26 on average, min. 0.12, max. 0.36) as compared with
distances between libraries from distinct ecosystems
(0.84 on average, min. 0.44, max. 0.99). Replicates
grouped together in both non-metric multidimensional
scaling (NMDS; Fig. S2) and Correspondence (CoA)
analyses (Fig. 3), revealing their high similarity in OTU
composition.

The composition of protist communities from the small
size fraction samples (0.2-5 um) differed greatly between
ecosystems (Fig. 2). First, richness and diversity indexes
were highly variable (Table 1). Samples from Ru Sainte
Anne and Etang des Vallées were the richest and the
most diverse, whereas La Claye was highly dominated by
few abundant OTUs (evenness = 0.34—0.27 in replicates).
La Claye and Saint Robert appeared relatively close in
NMDS plots (Fig. S2) and clustered close together in CoA
plots (Fig. 3). These two systems displayed relatively
similar physico-chemical parameters, notably oxygen
content and conductivity, and low diversity as compared
with the other ecosystems (Table 1). The similarity
between La Claye and St Robert community composition
was likely influenced by the fact that they were largely
dominated by the same cryptophyte OTU (Fig. 2; see
below).

Second, the relative abundance of taxonomic groups
varied between ecosystems, even though OTUs affiliated
to Cryptophyta, Stramenopiles (or Heterokonta) and
Alveolata accounted for the majority of sequences in all
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Table 1. Characteristics of freshwater systems studied and diversity and richness estimates for the different samples.

Sampled ecosystem Gabard (MG) Saint Robert (SR) Etang des Vallées (EV)

Sainte Anne (RSA)

La Claye (LC)

Ecosystem type
GPS coordinates
Approximate surface (m?)

Forest pond
48°39'15.83"N 1°55'20.26"E
850 (210 x 75 m)

Village pond
48°39'54.82"N 1°56'45.28"E
495 (20 x 28 m)

Large pond
48°41'23,0”N 001°54'59,2"E
12 880 (210 x 75 m)

Forest brook
48°36'45.91”N 1°58'16.61"E
1 m width at sampling point

Pond on peaty soil
48°36'31.72”N 1°56'17.33"E
265 (24 x 10 m)

Approximate depth (cm) 50 50 150 20 60

Sampling Date April 5, 2012 April 5, 2012 March 30, 2012 April 6, 2012 April 6, 2012

Water temperature (°C) 9.0 10.7 13.1 71 7.8

pH 6.6 7.2 7.31 7.36 7

Oxygen (%) 78.9 58.9 116.8 72.8 61.2

Conductivity (uS cm™) 81.4 531 288 746 520

TDS (mg 1) 81 531 288 746 520

Chlorophyll (ug I") 74.9 61.9 44.7 2.6 10.7

NOs™ (mg I") 1.41 1.17 5.08 1.45 2.02

NOz~ (mg )2 ~0 0.054 0.047 0.010 ~0

NH; (mg™) 0.02 1.22 0.02 0.03 0.04

DOC (mg I") 19.0 15.7 9.8 17.7 36.3

PO4* (mg I") 0.15 0.03 0.03 0.03 0.03

Size fraction studied 0.2-5 um 0.2-5 um 5-30 um 0.2-5 um 0.2-5 um 0.2-5 um

Sample EV34 EV34b

Name® MG25 MG25b SR25 SR25b (5-30 pum) (5-30 pum) EV33 EV33c RSA25 RSA25b LC25 LC25b

Number of 15 020 5110 85 803 6724 28418 14 168 22314 7938 37 766 7140 21283 14 215
reads
before
filtering

Number of 10616 4197 42 034 4506 10982 6906 17 670 3947 19 652 4243 11191 10 605
quality-
filtered
reads

Observed 76 55 15 37 147 132 177 87 427 198 66 68
number of
OTUs

Richness® 67.9 (2.37)  55.0(0.15) 11.4 (1.06)  36.8 (0.44) 134.4 (2.94) 126.9 (2.07) 148.5(3.99)  87.0(0.00) 313.7 (7.52) 197.8 (0.44) 57.9 (2.34) 57.0 (2.67)
(Standard
error)

Diversity 0.86 0.80 0.75 0.68 0.96 0.95 0.95 0.95 0.92 0.91 0.50 0.38
(Simpson
Index)

Evenness 0.58 0.56 0.61 0.45 0.75 0.72 0.69 0.78 0.64 0.7 0.34 0.27

a. Nitrite concentrations in Gabard and La Claye ponds were under the kit detection limit of 0.006 mg I and were set as 0 in analysis.
b. Samples correspond to 0.2-5 um cell-size fractions except stated otherwise. Replicate samples for the same site are labeled “b”.

c. Expected number of OTUs in random subsamples of the size of the smallest sequence library (3947 reads in EV33c).

Replicate samples are indicated by a small case letter after the sample name.

DOC, dissolved organic carbon; TDS, total dissolved solids.
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Fig. 1. Principal component analysis (PCA) plot of the measured
physico-chemical parameters. Sampled ecosystems appear in grey
(dots) and physico-chemical parameters in black. MG, Mare
Gabard; EV, Etang des Vallees; LC, La Claye; RSA, Ru Sainte
Anne; SR, Saint Robert. TDS, total dissolved solids; DOC,
dissolved organic carbon; OrthoP, orthophosphate.
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libraries (Figs 2 and 4). Cryptophyte sequences were
remarkably abundant, representing up to 49% and 53% of
the total number of reads and reads of the 0.2-5 pum size
fraction respectively. Cryptophytes were the dominant
group in Saint Robert and La Claye (around 75% of reads
in those samples). They were also the dominant group in
the brook Sainte Anne (between 32-44% of reads) and
were the second most abundant group in the two other
systems (Fig. 2, Table S1). Most cryptophyte reads
belonged to a unique OTU affiliated to Cryptomonas
curvata (OTU_52; Figs 4 and S3). Stramenopiles con-
stituted the second most abundant group in our systems
and represented 25% of all reads and nearly 24% of the
reads from the 0.2-5 um size fraction samples (Fig. 2,
Table S1). Within this supergroup, Chrysophyceae were
abundant in all samples. However, the most abundant
stramenopile groups in Mare Gabard and Ru Sainte
Anne were, respectively, Synurophyceae and Bacillario-
phyceae, two lineages producing silica skeletons or
scales. Oomycetes were also relatively abundant in the
brook Sainte Anne. Alveolates constituted the third most
abundant supergroup in our study. It was the dominant
group in Etang des Vallées (32—41% of reads in replicates

- W Ciliophora
® Other Stram
= ] —i ——— Xanthophyceae
Labyrinthulida
M Synurophyceae
— = Chrysophyceae  RHeterokonta
. Oomyceta
Bacillariophyceae
1 | M Bicosoecida
W MAST
W Streptophyta .
N L] o . m Chiorophyta IArchaepIashda
mMetamonada | Excavata
= Other Amoebozoa|
| IAmoebozoa

" Uncertain
B Apusomonadida
® Ancyromonadida
M Telonemia
Katablepharida
i Centroheliozoa
M Cryptophyta
M Haptophyta
Cercozoa
Other Alveolata
Perkinsea
= Apicomplexa

Alveolata
m Dinoflagellata

W Discosea
Choanoflagellida

W Ichthyosporea Opisthokonta
W Fungi

MG25 MG25b SR25 SR25b EV34 EV34b EV33 EV33c RSA25 RSA25b LC25 LC25b
Gabard pond Saint Robert pond Etang des Vallées  Etang des Vallées Sainte Anne brook La Claye pond
5-30 ym 0.2-5 ym

Fig. 2. Histogram showing the relative proportion of 18S rRNA gene amplicon reads assigned to high-rank taxa in the five shallow
ecosystems studied. Replicate samples are labelled as ‘b’ or ‘c’. In all cases, the distribution corresponds to protists in the 0.2-5 um size
range, except in the Etang des Vallées, where the 5-30 um size fraction was additionally analysed.
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Fig. 3. Correspondence analysis (CoA) plot showing protist
community composition similarities and differences among the five
ecosystems studied. MG25 and MG25b, Mare Gabard; LC25 and
LC25b, La Claye; SR25 and SR25b, Saint Robert; RSA25 and
RSA25b, Ru Saint Anne; EV33 and EV33c, Etang des Vallées
(0.2-5 um size samples). EV34 and 34b, Etang des Vallées
(5-30 um size samples).

of the 0.2-5 um size fraction, and similar values for the
larger size fraction analysed) and one of the dominant
groups in Mare Gabard (22—-40% of reads in duplicate
samples). It was also a major component in Saint Robert

pond (12—20%). However, they represented only a small
proportion of the taxa detected in the brook Sainte Anne
and La Claye pond (less than 5% of reads; Fig. 2,
Table S1). Among alveolates, ciliates were the most rep-
resented in all samples; although OTUs affiliated to dino-
flagellates and other alveolates had occasionally
significant proportions.

Along with these three abundant supergroups,
members of the Opisthokonta, Amoebozoa, Excavata,
Archaeplastida, Rhizaria and of groups of uncertain posi-
tion in the eukaryotic tree were also detected. Because
we purposefully used general eukaryotic primers biasing
against Metazoa, opisthokonts were essentially re-
presented by fungi, although choanoflagellates and
ichthyosporeans were also detected. The highest abun-
dance of fungi was observed in Mare Gabard and Ru
Sainte Anne, but they generally represented less than
10% of reads. Rhizarian OTUs were retrieved in all
ecosystems and were only represented by cercozoans.
They were not abundant except for the Ru Saint Anne,
where they reached 6-8% of the reads. Katablepharid
sequences represented as much as 8-11% of reads from
the 0.2-5 um fraction in the Etang des Vallées but were
less abundant elsewhere (0.03% on average in each
small size fraction sample). Archaeplastida (streptophytes
and, mainly, chlorophytes) were detected in all ecosys-
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Fig. 4. Rank abundance curve for the total 768 OTUs detected collectively in the 0.2-5 um size fraction of the five shallow freshwater
systems studied. Sequence data from all samples were pooled to define OTUs with high stringency. The relative abundance of protist OTUs
representing more than 0.5% of the total number of reads are shown in the inset. The identity number of the respective OTUs and their
taxonomic affiliation are shown below and above the histogram bars.
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Fig. 5. Distribution of protist OTUs in the five shallow freshwater systems studied. Sequence data from replicates were pooled.

A. Five-set Venn diagram showing the number of specific and shared OTUs in the different freshwater systems (0.2-5 um fraction size).

B. Venn diagram showing OTUs shared by the two fraction sizes analysed in Etang des Vallées.

C. Clustering analysis of the five ecosystems based on the presence of shared OTUs, as shown by the heatmap. Only 0.2-5 um size fractions
are considered. Heatmaps show all OTUs and OTUs shared by two, three or four ecosystems. No OTU is shared by all five ecosystems.
Each row represents an ecosystem and each vertical bar an OTU. Black: OTU present, Grey: OTU absent. The coloured sidebar indicates the
taxonomic affiliation of the OTU represented by the bar below. Colour codes representing different phylogenetic affiliation are indicated in the
box. CCTHK: Cryptophyta, Centroheliozoa, Telonemia, Haptophyta and Katablepharida. For presentation reasons, the width of OTU bars is
not the same in all the heatmaps. RSA25d, Ru Sainte Anne; LC25d, La Claye; SR25d, Saint Robert; MG25d, Mare Gabard; EV33d, EV34d,

Etang des Vallées.

tems. Haptophytes were also identified, although in low
proportions, and only in the Etang des Vallées and the Ru
Sainte Anne. OTUs affiliated to Excavata, Labyrinthulida,
Xanthophyceae, Apicomplexa, Centroheliozoa, Telone-
mida, Amoebozoa and Apusomonadida (Apusozoa) were
detected only in the highly diverse Sainte Anne brook
(Fig. 2, Table 1). Three additional apusozoan OTUs
were detected in Sainte Anne brook and the Etang des
Vallées.

Despite some similarity in the distribution of large
phylogenetic groups, with cryptophytes, stramenopiles
and alveolates dominating the different shallow water
systems, protist communities were very different at the
phylotype scale. Indeed, no OTU was shared by all the
systems and the vast majority of the 768 OTUs detected
in the small size fraction was specific to the libraries of a
single ecosystem (Fig. 5A). Sixty-seven and twelve OTUs
were shared by two and three different ecosystems
respectively (Fig. 5C). Only three OTUs were shared
by four systems (Fig.5C), two of which affiliated to
cryptophytes and corresponded to the most abundant

OTUs (Fig. 4). Remarkably, OTU_52, affiliated to
Cryptomonas curvata, was particularly abundant in St
Robert and La Claye samples where it represented as
much as 43-52% and 69-78% of reads respectively.
However, OTU_52 dropped to 4-7% of reads in the
0.2-5 um fraction of the Etang des Vallées and was
not detected in Mare Gabard. OTU_25, affiliated to
stramenopiles, was also shared by four systems, but rep-
resented only 0.13% of all reads in 0.2-5 um fractions.
The composition of protist communities within the two
different size fractions (0.2-5 and 5-30 um) of the Etang
des Vallées was very similar, as revealed by the NMDS
and CoA analyses (Figs 3 and S2) as well as by low
Bray—Curtis distances (0.35 on average, min: 0.29, max:
0.43). Moreover, the community structure was similar in
both size fractions from the Etang des Vallées, which
displayed the highest diversity and evenness recorded of
all samples (Table 1). The taxonomic composition was
also similar at high-rank taxa level, although diatoms and
green algae were in slightly higher proportions in the
largest size fraction (Fig. 2). At a finer level of resolution,
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more OTUs were shared by both size fractions (131
OTUs) than specific to each of them (Fig. 4B).

Phylogenetic diversity

In order to get more detailed information on the different
OTUs identified, we carried out phylogenetic analyses
with partial 18S rRNA gene sequences representative of
the different OTUs. Although cryptophytes were the most
abundant group in our samples, they were not very
diverse. Only 27 OTUs were affiliated to that group (3.3%
of all OTUs). Most of these OTUs were closely related to
existing sequences, affiliating to photosynthetic genera,
especially Cryptomonas (containing the highly overrepre-
sented OTU_52 corresponding to C. curvata mentioned
above) and Chroomonas, but also to the phagocytic
plastid-lacking Goniomonas (Fig. S2). However, several
OTUs appeared to be quite divergent; for instance, rep-
resentative sequences of OTUs 838 and 1812 shared no
more than 93% of identity with their first BLAST hit in the
NCBI database, the sequences HM135076 from freshwa-
ter (Luo etal., 2011) and AM901364 from the cultured
Cryptomonas commutata strain M1975 respectively
(Fig. S3).

A total of 268 OTUs (33% of all OTUs) were affiliated
with stramenopiles, the second most abundant group
in our samples. Nearly half of them were related to
Chrysophyta-Synurophyta (125 OTUs) whereas the
remaining ones affiliated to Eustigmatophyta, Dictyo-
chophyta, Bicosoecida, Oomycetes, Bacillariophyta,
Xanthophyta and Labyrinthulida (Fig. S4). Surprisingly,
14 OTUs seemed to belong to various MAST groups
(Fig. 6), originally thought to be exclusively marine. Nine
OTUs affiliated to the group MAST-12, being related to
sequences previously detected in a wide variety of eco-
systems, such as a suboxic Norwegian estuary (Kolodziej
and Stoeck, 2007), freshwater lakes (Lefevre et al., 2008;
Monchy et al., 2011) and a peat bog (Lara et al., 2011).
OTU_116 was closely related (99% identity) to MAST-2
sequences detected in a freshwater lake (Luo et al., 2011)
and the Mediterranean (Diez et al., 2001). OTUs_1850
and 3339 affiliated to MAST-3, which so far was known to
contain only sequences from marine environments.
Finally, OTU_222 and OTU_3247 had similarity by BLAST
to MAST-6 sequences retrieved from the Mediterranean
(AF363207, Diez etal, 2001) and other MAST-6
sequences, with 94% and 91% identity respectively.
However, from the phylogenetic analysis, their affiliation
to this clade is unclear and will require a more in-depth
exploration of these groups.

Alveolates were also found to be diverse (Figs S5 and
S6), but the vast majority of OTUs were assigned to
ciliates (88 out of 125 alveolate OTUs). Dinoflagellates
were also represented in our samples, along with 17

OTUs related to sequences of putative freshwater
(Amaral-Zettler etal., 2008; Monchy etal., 2011) or
marine (Behnke et al., 2010; Scheckenbach et al., 2010)
perkinsid parasites. Interestingly, several OTUs grouped
with Apicomplexa and Colpodellida and clustered into two
distinct groups (Fig. S5). Eight OTUs clustered with
Colpodella edax (Leander et al., 2003) and many environ-
mental sequences from freshwater lakes or ponds
(Richards, 2005; Lefévre et al., 2007; Nakai et al., 2012;
Oikonomou et al., 2012). Three other OTUs clustered
with sequences affiliated to apicomplexans (mostly
Cryptosporidium) coming from more diverse environ-
ments, e.g. peat bog (Lara et al.,, 2011), marine sediment
(Dawson and Pace, 2002), humans (Yuan et al., 2012) or
ostrich faecal samples (R. Martinez-Diaz, unpublished).

From the 131 OTUs affiliated with opisthokonts, the
great majority (125 OTUs) related to fungi, mostly to
chytrids but also to ascomycetes, basidiomycetes or to
the basal Rozellida/Cryptomycota lineage (Fig. S7). In
addition, 11 OTUs were related to the aphelids, the sister
group to fungi, which so far mostly contains highly diver-
gent 18S rRNA gene environmental sequences (Karpov
et al.,, 2014). Several OTUs clustered with ichtyosporeans
and choanoflagellates (Fig. S7).

All  rhizarian OTUs branched with cercozoan
sequences. Even though cercozoan OTUs were not very
abundant in our samples and represent only 1.2% of the
total number of reads, they were composed of numerous
phylotypes (106 OTUs) that represented altogether 13%
of all OTUs. The vast majority of these OTUs affiliated
to the Filosa (Fig. S8). Several OTUs branched with
Endomyxa, although they shared only 93.6% identity on
average with their first BLAST hits in GenBank (calculated
on the 13 OTU representative sequences affiliated
to Endomyxa, min: 89% between OTU_12985 and
AB526843, max: 99% between OTU_1810 and
EU910610). Furthermore, five OTUs clustered with
sequences from the Novel Clade 10, and OTUs_2162 and
608 shared 92% and 91% identity respectively with
sequence EU567287 from Novel Clade 11 — Tremulida,
two recently defined deep-branching cercozoan lineages
(Bass et al., 2009; Howe et al., 2011).

Sixty-five OTUs (8% of all OTUs) belonged to
Archaeplastida (Fig. S9). Five of them strongly affiliated to
Embryophyta. Given the pre-filtration steps, these OTUs
must correspond to pollen grains, free DNA or cells from
dead leaves. Strikingly, they represented altogether only
0.04% of all reads, in spite of the dense vegetation around
most sampled systems. Four additional OTUs most
likely corresponded to unicellular Streptophyta, affiliated
to Clausteriaceae and Desmidiaceae. The remaining
archaeplastid OTUs affiliated to the chlorophyte classes
Mamiellophyceae, Trebouxiophyceae, Nephroselmido-
phyceae and, mainly, Chlorophyceae. In addition, we
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Fig. 6. Approximate maximum likelihood (ML) phylogenetic tree of partial 18S rRNA gene stramenopile sequences showing the presence of
several MAST clades in shallow freshwater systems. Non-MAST stramenopile lineages have been collapsed. A total of 392 unambiguously
aligned positions were used to reconstruct the tree. Two alveolate sequences were used to root the tree. Representative sequences of OTUs
from this work are shown in bold. The name of samples where MAST OTUs were detected and the respective proportion of reads are shown
within brackets. The scale bar represents the number of estimated substitutions per position for a unit branch length. RSA25/RSA25b, Ru

Saint Anne; MG25/MG25b, Mare Gabard; EV33/ EV33b (0.2-5 um)

detected a few OTUs belonging to other, less abundant
eukaryotic groups. Thus, four, one and six OTUs affiliated
to katablepharids, telonemids and haptophytes respec-
tively (Fig. S3). Most haptophyte OTUs were very close to
other freshwater sequences, but the OTU_3295 had
a sequence nearly identical to Jomonlithus littoralis
(AM490979; 99% identity), a coastal species and to two
environmental sequences (JX680345, JX680344) from a

and EV34/EV34b (5-30 um), Etang des Vallées.

brackish pond (Simon et al., 2013). Sequences belonging
to the basal haptophyte group HAP-1 (Slapeta et al.,
2005) were detected in the Ru Sainte Anne (OTU_3063;
Fig. S3). Six additional OTUs belonged to centro-
heliozoans (Fig. S3). Their closest relatives were
sequences from soil or freshwater sediment and were
only retrieved in Sainte Anne brook, the most narrow and
less deep ecosystem (Table 1). That observation, along
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Fig. 7. Canonical correspondence analysis (CCA) plot. Only
0.2-5 um size fractions are considered. Each dot represents an
OTU. The colours indicate the taxonomic affiliation. Black triangles
indicate samples. Duplicate samples appear superimposed.
CCTHK: Cryptophyta, Centroheliozoa, Telonemia, Haptophyta and
Katablepharida. TDS: total dissolved solutes, DOC: dissolved
organic carbon, OrthoP: orthophosphate.

with the higher proportions and diversity in Sainte Anne
brook of cercozoa, fungi and diatoms, known to be usually
composed of large and/or benthic cells, could be
explained by a higher influence or contribution of benthic
communities in this system. One excavate OTU
(OTU_1857; 99% identical to Trimastix marina) and one
apusomonad OTU were also detected in Sainte Anne
brook. Three amoebozoan OTUs from the brook and two
ancyromonad OTUs could also be detected in our small
freshwater systems (Fig. S9). Finally, 66 of the total 812
OTUs determined could not be affiliated with confidence
to any group.

Effects of physico-chemical parameters and distance on
community structure and composition

The five sampled ecosystems were separated by dis-
tances between 2 and 9.5 km (Fig. S1). To see whether
the differences in community composition increased with
geographical distance, we pooled sequence data from
replicate samples for the 0.2-5 um size fraction, calcu-
lated Bray—Curtis distances between all systems based
on the pooled data and performed a Mantel analysis
to test the correlation between Bray—Curtis and geo-
graphical distance matrices. The Mantel test showed no
correlation between differences in protist community com-
position and distance between ecosystems (r=0.2151,
P-value = 0.236). As an illustration, OTU_52 (Crypto-
monas curvata) reached 44% of all reads (43-52% in
replicates) in the Saint Robert pond, but it could not be
detected in the Gabard pond (Fig. 5), its nearest system

(2.1 km away). However, this OTU was detected in all
other systems, up to 9.5 km away.

As mentioned above, each of our five ecosystems was
characterized by a set of specific environmental variables,
with the Mare Gabard and the Ru Saint Anne being,
respectively, the less and most charged in TDS and Saint
Robert being highly enriched in ammonia (Table 1; Fig. 1).
All these differences in environmental parameters corre-
lated to the structure of protist communities in these
ecosystems as revealed by a Mantel test linking environ-
mental and community pairwise distances between
samples (r=0.7323, P-value =0.014). However, addi-
tional canonical correspondence analyses (CCA) did not
reveal any clear relationship between any of the detected
eukaryotic supergroups and one or several environmental
variables, although some OTUs appeared to be associ-
ated with particular samples according to their specific
presence (Fig. 5) and distribution in CCA (Fig. 7). At the
phylum or class level (Fig. S10), haptophytes, katable-
pharids, choanoflagellates, cercozoans and cryptophytes
appeared to reach higher proportions where pH was the
highest and phosphate concentration the lowest, the two
latter variables being tightly correlated in PCA and CCA
(Figs 1 and 7). Streptophytes were associated with high
values of DOC whereas bacillariophytes and fungi were
more abundant where total dissolved solutes were the
highest. These features could thus partially explain the
differences in composition of the small eukaryotes among
our contrasting ecosystems.

Discussion

Shallow freshwater systems, reservoirs of
protist diversity

Compared with oceans, molecular protist diversity
surveys in freshwater ecosystems are still scarce. Para-
doxically, inland water bodies are collectively much more
heterogeneous than oceans and much more sensitive to
environmental variation. Despite so, only a handful of
studies on freshwater protist communities exist, mainly
from a variety of lakes, from temperate regions and moun-
tains to polar areas (e.g. Charvet etal., 2012; Lepere
etal.,, 2013; Taib et al., 2013). However, nearly nothing
is known from smaller, shallower and often ephemeral
freshwater systems, despite their global distribution and
ecological importance (Downing et al.,, 2006). Recent
approaches based on massive sequence analysis,
although prone to a variety of methodological errors and
biases, are called to facilitate comparative studies among
those ecologically relevant ecosystems. This is especially
true for tiny protists, because morphology-based explora-
tion very often miss their phylogenetic diversity (Massana
etal., 2002; Moreira and Lépez-Garcia, 2002; élapeta
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et al., 2006). To contribute to that task, we carried out a
study based on massive pyrosequencing of amplified 18S
rRNA gene fragments of protists in the 0.2-5 um size
range in five shallow freshwater ecosystems from a
temperate area. Many of the high-rank taxa detected
occur, although with variable relative abundances, in
other freshwater systems, such as lakes. Cryptophytes,
stramenopiles and alveolates were by far the most abun-
dant supergroups detected, although their internal diver-
sity varied greatly among ecosystems (Fig. 2). Although
less abundant in the open sea (Shi et al., 2009; Kirkham
et al., 2013), small cryptophytes seem to be common in
freshwater (Lefranc and Thénot, 2005; élapeta et al.,
2005; Lepére et al., 2008; Mangot et al., 2012; Taib et al.,
2013). Stramenopiles, as well as ciliates, which dominate
the alveolate diversity in our samples, are also common in
protist communities from freshwater lakes (Lefranc and
Thénot, 2005; Lepere etal., 2008; Taib etal, 2013).
Fungi, Ichthyosporea and choanoflagellates within the
Opisthokonta, cercozoans within the Rhizaria, and mem-
bers of the Amoebozoa, Archaeplastida, Excavata as
well as members of the phylogenetically unresolved
Haptophyta, Centrohelida, Katablepharida, Telonemida-
and Apusozoa were also detected.

Surprisingly, fungi and their relatives, which are often
detected in very large proportions in some lakes (Lefranc
and Thénot, 2005; Lepére et al., 2008), accounting for up
to 94% of all the 454-pyrosequences in some of them
(Taib et al., 2013), were in very low proportions (generally
much less than 10%; Fig. 2) in our systems. This may
reveal a real difference between shallow ecosystems and
deeper lakes, but it could also reflect varying population
dynamics along the year (Nolte et al., 2010). Our samples
were collected in early spring and many of the fungal
OTUs detected correspond to potential parasitic fungi or
related lineages, such as chytrids, rozellids/cryptomycota
or aphelids (Fig. S7), which might experience fluctuation
depending on host population dynamics along the year.
Temporal surveys would be needed to test such a hypoth-
esis. Several OTUs in our freshwater systems branched
deeply within known eukaryotic supergroups. Thus, the
Rozellida-Cryptomycota and the aphelids have been con-
sidered the deepest lineages of fungi (Lara et al., 2010;
Jones etal.,, 2011), although recently, they have been
re-classified as forming part of the superphylum
Opisthosporidia together with Microsporidia and would
be the sister group to fungi (Karpov etal, 2014).
Other detected deep-branching lineages include the
Colpodellida (Leander et al., 2003) within the alveolates,
the poorly known novel Clade-10 Cercozoa and
Tremulida (Bass et al., 2009; Howe et al., 2011) or the
early diverging haptophyte lineage HAP-1, so far only
detected in freshwater systems (élapeta etal., 2005;
Shalchian-Tabrizi et al., 2011).
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Although protist community composition was different
in the five analysed systems, the comparison of protist
diversity in two cell fraction sizes (0.2-5 and 5-30 um) in
the most diverse site, the Etang des Vallées, did not
differ much in terms of high-rank taxa (Figs2 and 3).
Indeed, despite the presence of OTUs apparently con-
fined to each cell-size fraction (21% and 25%, for the
smaller and larger size ranges, respectively), a consid-
erable proportion of OTUs (53%) were shared between
the two cell fractions (Fig. 5B). Several explanations are
possible and non-mutually exclusive. One is that many
small organisms may be retained in filters of larger pore-
diameter if the filtered biomass is high, because they
might be entangled with larger organisms. On the oppo-
site, flexible organisms of relatively bigger sizes than
those of filter pores may pass through them under the
filtration pressure applied. Finally, many organisms may
encompass a size range that spans the 5 um diameter
barrier imposed by our filters. This may be due to either
differential sizes during their life cycle (e.g. gametes or
spores and vegetative forms) or to size variability under
a given life stage.

The broad protist diversity unveiled in the five freshwa-
ter systems also reflects a wide ecological diversity of
functions. At a very general level, typical photosynthetic,
heterotrophic and parasitic groups were detected. Among
photosynthesizers, cryptophytes followed by photosyn-
thetic stramenopiles (diatoms, chrysophytes, synuro-
phytes, xantophytes) largely exceeded green algae. Many
of these lineages may also contribute to heterotrophic
activities, because many photosynthetic protists are
mixotrophs (Zubkov and Tarran, 2008; Massana, 2011;
Hartmann et al., 2012). Typical predators span most of the
eukaryotic diversity identified, from choanoflagellates and
amoeba to bicosoecids, ciliates, cercozoa, centrohelids,
katablepharids or apusozoa (Fig.2). However, hetero-
trophic activities also encompass the degrading activity of
osmotrophic taxa, including several fungi and labyrin-
thulids and that of parasitic or parasitoid protists (many
chytrids, cryptomycota, aphelids, oomycetes, apicom-
plexa, perkinsids).

Altogether, our extensive 18S rDNA-based survey
of small protists suggests that shallow freshwater
systems are important reservoirs of eukaryotic diversity.
Not only members of all supergroups are present,
but also several members of uncertain, poorly known
or deep-branching lineages. Given the heterogeneity of
this kind of systems on Earth, it can be advanced that
further studies on shallow freshwater systems will
uncover yet-to-characterize protists, the study of which
will be of relevance to understand the ecology of these
ecosystems and, from an evolutionary perspective,
to reconstruct poorly resolved areas in the eukaryotic
tree.
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Marine-freshwater barriers transgressed

One of the potential surprises that the study of protist
diversity in varied freshwater systems may bring is the
increasing awareness that salinity barriers can be over-
come more easily than previously thought. Although line-
ages with members in both freshwater and marine
systems exist, such as dinoflagellates, haptophytes,
perkinsids or stramenopiles (Logares et al., 2007; Brate
et al., 2010; Shalchian-Tabrizi et al., 2011; Simon et al.,
2013), the marine-freshwater transition is thought to be
rare (Logares et al., 2009). However, this view may be
biased by current undersampling of freshwater systems.
Indeed, in our study, we have detected protist lineages
thought to be exclusively marine in the past, notably
several MAST lineages. Thus, we did not only identify
members of MAST-2 and MAST-12 lineages, which have
recently been detected in other freshwater systems
(Massana et al., 2014), but also members of MAST line-
ages never identified in freshwater systems before. This
was the case of MAST-3, for which we identified two bona
fide OTUs and, potentially, of MAST-6 and even MAST-1
lineages, although OTUs related to the latter are of much
more uncertain affiliation (Fig. 6).

Moreover, in addition to the occurrence of the emblem-
atic MAST groups in these shallow freshwater systems, we
also identified many OTUs widespread in the eukaryotic
tree that share 99% identity or more with sequences
retrieved from marine environments. Examples are the
haptophyte OTU_3295, practically identical to Jomonlithus
littoralis (Fig. S3), the stramenopile OTU_116 (Fig. S4),
the ciliate OTU_255 (Fig. S6) or the excavate OTU_1857
affiliating to Trimastix marina (Fig. S9). But there are many
other OTUs whose closest relatives are sequences from
marine systems, even if similarity is slightly lower.

In fact, even if salinity seems to be a relevant ecological
determinant structuring microbial communities (Lozupone
and Knight, 2007), the marine-freshwater barrier seems to
be relatively easy to cross. On the one hand, several
protists, notably cryptophytes, are osmotolerant and can
cope with various salinity concentrations by the means of
contractile vacuole regulation (Hoef-Emden, 2014). On
the other hand, many freshwater systems contain rela-
tively high levels of dissolved solutes (organic and/or inor-
ganic) requiring similar adaptations as those require for
life in seawater salts. In this sense, it is interesting to note
that most of the ‘typically marine’ lineages detected in our
freshwater systems were identified in the Ru Sainte Anne,
which has the highest TDS content and seems greatly
influenced by this parameter (Table 1; Fig. 7).

Elements of protist biogeography

There are two essentially opposed views with regard to
microbial and, more specifically, protist biogeography.

Most classical views posit that small free-living protists
would find little barriers to dispersal and, hence, be widely
distributed. Differences in protist community structure
would then be essentially explained by local environmen-
tal parameters. This ‘everything is everywhere, but the
environment selects’ view seems supported by the occur-
rence of cosmopolitan protist species (Baas-Becking,
1934; Finlay, 2002; élapeta et al., 2006). On the opposite
extreme, a variety of studies seem to suggest that
endemic protists (Foissner, 2006) and taxa—area re-
lationships exist for microbial eukaryotes (Green et al.,
2004). Comparing community compositions sidesteps
undersampling and the nearly impossible task of demon-
strating true microbial endemisms (Martiny et al., 2006). A
recent study suggested that the beta-diversity of the small
eukaryotes between lakes was linked to the geographic
distances between ecosystems (Lepére etal., 2013).
However, it is extremely difficult to disentangle the effect
of local environmental parameters from physical distance.
Furthermore, other factors, such as the temporal (Nolte
etal, 2010) and the phylogenetic scale (Ragon et al.,
2012) need to be taken into account. In our case, we
sampled the five systems at the same or correlative dates
to limit temporal effects and, although the distances
involved were different from those in the study of Lepére
and colleagues (2013) (10 versus 100 km scale), our
study clearly rejects geographic distance as a driver of
community composition. On the contrary, Mantel tests
show significant correlations between differences in com-
munity structure and physico-chemical parameters.
However, clear associations between high taxon levels
and environmental parameters were not identified (Fig. 7
and S10). Differences at finer, OTU scale might provide
hints about the role of environmental selection in deter-
mining community structure. At any rate, testing which
factors more greatly influence the composition of these
communities would require the inclusion of biotic param-
eters, notably the diversity and relative abundance of
bacteria, archaea and viruses from the same systems.

Experimental procedures

Sampling and measurement of
physico-chemical parameters

Samples were collected in spring 2012 from five small and
shallow freshwater ecosystems at the Natural Regional Park
of the Chevreuse Valley (France, South of Paris) (Table 1
and Fig. S1). The systems were chosen to represent
a variety of conditions at local scale, from forest ponds
rich in organic matter (Mare Gabard) to more urban and
agricultural-influenced systems (Saint Robert). Surface
water was collected using sterile plastic carboys and pro-
cessed immediately back in the laboratory. Water samples
were serially filtered through 30 pm pore-size nylon filters
(Millipore), and through 5 and 0.2 um pore-size diameter
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Nucleopore membranes (Whatman). Filters were stored
frozen at —20°C until DNA extraction. The water tempera-
ture, pH, the concentration of total dissolved solutes and the
level of dissolved oxygen were measured in situ using a
multiparameter probe (Multi 350i, WTW). The concentrations
of dissolved nitrate (NOj"), nitrite (NO."), ammonia (NHa),
orthophosphate (PO,*>) and DOC were measured in
water samples filtered through 0.2 um pore-size diameter
Nucleopore membranes on the same day of sampling
using manufactured colorimetric tests (Hach-Lange).
Chlorophyll a concentrations were determined after harvest-
ing plankton biomass on glass microfiber filters (GF/F,
Whatman) that were stored at —20°C until ethanol pigment
extraction. For chlorophyll extraction, filters were dried
then ground in 7 ml of absolute ethanol, and heated at
70°C for 20 min. After centrifugation, 1 ml of supernatant
was collected and optical densities at 665 and 750 nm
were measured (spectrophotometer DR5000 Hach-
Lange). Chlorophyll a concentration was determined
on pigment extract by spectrophotometry, as follows:

[Chia] =11.9 + (ODess = OD?S%/ +Ve/ with [Chla]: [Chia]=

11.9 (ODees - OD75°%V * V%f chlorophyll a concentration

(ug I'"), 11.95: Reciprocal specific absorbance coefficient of
chlorophyll a at 665 nm (ug cm ml™"), ODees: optical density
at 665 nm, OD-so: optical density at 750 nm, w: width of the
spectroscopic cuvette (1 cm), Ve: volume of the pigment
extract (in ethanol, ml) and Vf: volume of water filtrated on
the glass microfiber filter (I). The protocol was adapted from
Ritchie (2006).

DNA extraction, amplification and sequencing of 18S
rRNA genes

DNA was extracted from cells collected onto filters that were
cut into pieces using the PowerSoil DNA extraction kit
(MoBio) according to the manufacturer’s instructions. DNA
was eluted in 80 pl of 10 mM Tris, pH 8.0. 18S rRNA gene
fragments of approximately 550 bp, encompassing the
V4 hypervariable region, were amplified using the newly
designed primer EK-565F (5-GCAGTTAAAAAGCTCG
TAGT) and primer 18s-EUK- 1134-R- UNonMet (5"-TTTAA
GTTTCAGCCTTGCG) biased against Metazoa (Bower et al.,
2004). Both forward and reverse primers were tagged with 20
different 10 bp molecular identifiers (MIDs) to allow pooling
and later differentiation of polymerase chain reaction (PCR)
amplification products from 20 distinct samples. PCR ampli-
fications were conducted in a total reaction volume of 25 pl
using 1.5mM MgCl,, 0.2 mM of each deoxynucleotide
(dNTP) mix (PCR Nucleotide Mix, Promega), 0.3 uM of each
primer, 0.3-2 ul of DNA sample and 0.5 U HotStart Taq poly-
merase (Taq Platinum, Invitrogen). The amplification condi-
tions consisted of 25 cycles (94°C for 30 s, 58°C for 45 s and
72°C for 90 s), preceded by 3 min of denaturation at 94°C
and ending with a 10 min final extension step at 72°C.
Amplicons from 5-7 independent PCR products for each
sample were pooled together and then purified using the
QlAquick PCR purification kit (Qiagen), according to the
manufacturer’s instructions. The same amounts (around
200 ng) of purified amplicons from 20 samples were pooled.
Amplicons were pyrosequenced using the 454 GS FLX Tita-
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nium technology from Roche (Beckman Coulter Genomics).
Sequences have been deposited at NCBI under the
BioProject number PRINA259710.

454 Pyrosequence analysis

We obtained a total of 265 899 pyrosequences (Table 1). A
series of filters were applied in order to retain only high-
quality sequences. First, pyrosequences containing errors
in the primer region and positions with undetermined
bases were eliminated using a local pipeline (Bachy et al.,
2013). The remaining sequences were analysed with
AmpliconNoise (Quince etal., 2011) to further eliminate
errors introduced during PCR reactions or 454 sequencing,
and build OTUs. Filtered reads were clustered by pairwise
alignment and average linkage into OTUs with a 98% simi-
larity cut-off using AMPLICONNOISE integrated in our local pipe-
line (Bachy et al., 2013). Singletons, i.e. OTUs composed of
only one read, were eliminated for precaution. The most
abundant sequence in each OTU was used as reference.
OTU reference sequences were blasted against the Silva
SSU111 database (Pruesse etal., 2007) and assigned to
taxonomic groups based on sequence similarity. The
sequences in all OTUs were then attributed to the different
samples according to their MIDs. Chimerical OTUs were
eliminated by a stringent procedure combining automated
and manual steps. OTUs including sequences from at least
two different samples were considered to be real. OTUs
composed of sequences from only one sample were checked
for chimeras using KEYDNATOOL (http://KeyDNAtools.com).
The sequences considered suspect by the software were
double checked by comparing BLAST hits recovered from
independent sequence fragments (sequences were split in
two and three fragments). Finally, OTUs whose representa-
tive sequence had a coverage of less than 90% with its first
BLAST hit were eliminated if they were present in only one
sample; they were kept but with their taxonomic affiliation
changed to ‘uncertain’ if they were present in at least two
samples. OTUs affiliated to cryptophyte nucleomorphs were
excluded from our analysis. After filtering, we kept 146 549
correct reads (Table 1).

Phylogenetic analyses

Phylogenetic trees were built for each eukaryotic super-group
or for several high-rank taxonomic lineages if they com-
prised only a few OTUs. Analyses included representative
sequences of OTUs, their first BLAST hit and sequences from
the closest cultured members. Sequences were aligned
using PROBCONS (Do et al., 2005). Positions retained to build
trees were selected from the multiple alignments using
GBLOCKS (Castresana, 2000) with the less stringent param-
eters. Phylogenetic reconstructions were then carried out by
maximum likelihood approximation using FASTTREE (Price
etal., 2010). Trees were visualized using FIGTREE (http://
tree.bio.ed.ac.uk/software/figtree/). Sequences with particu-
larly interesting positions in trees were then blasted against
the NCBI database (http://blast.ncbi.nlm.nih.gov) to have an
insight of their similarity with additional sequences in data-
bases. The taxonomic indications given in trees are based on
the taxonomic affiliation proposed in the PR2 database
(http://ssu-rrna.org/index.html).
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Statistical analyses

Statistical analyses were conducted using the R SOFTWARE
(http://cran.r-project.org) (R Development Core Team, 2013).
To assess overall differences between microbial community
compositions, we calculated pair-wise Bray—Curtis distances
between all samples on the basis of OTU proportions
(number of reads from each OTU for each sample normal-
ized to the total number of reads in the corresponding
sample) among replicates or sampling sites (Bray and Curtis,
1957). This would avoid heterogeneity due to different
numbers of sequences generated per sample. NMDS ordi-
nation analyses were conducted based on Bray—Curtis
distances (after applying a Wisconsin standardization to
balance the influence of the most and least abundant OTUs)
using the ‘Vegan’ R PACKAGE (Oksanen et al., 2013). CoA on
all OTU frequencies for all 12 samples were done using the
‘Ade4’ R PACKAGE (Dray and Dufour, 2007). Diversity and
richness indices were determined using the ‘Vegan’
package. Richness was estimated by rarefaction analysis as
the estimated number of OTUs in a random subsample of
each sequence library (raw counts of OTUs), of the same
size as the smallest one (Hurlbert, 1971). Simpson index

S
is defined as D’ :1—2(1‘,2) (Simpson, 1949) and evenness

i=1
-3° fin(f) . .
was calculated as e = = In(s) (Pielou, 1966) with

S being the observed number of OTUs and f; the frequency
of each OTU; in the sample. Venn diagrams showing the
number of OTUs shared by, or exclusive to, the different
samples, and heatmaps showing the presence/absence of
OTUs were built using the ‘GPLOTS’ PACKAGE (Bolker et al.,
2012). To test whether community composition correlated
with environmental parameters in the different samples, we
constructed a matrix of Bray—Curtis dissimilarities based
on OTU frequencies (sequences from replicate samples
were pooled given that they clustered together in previous
analyses) and a matrix of Euclidean distances based on
physico-chemical parameters for all ecosystems using the
‘Vegan’ package. Both matrices were compared using a
Mantel test. The Bray—Curtis matrix was also compared with
a matrix of geographical distances between ecosystems.
Geographical distances were estimated based on coordi-
nates (http://biodiversityinformatics.amnh.org/open_source/
gdmg/), using the mean earth radius (Moritz, 2000) as
spheroid. PCA and CCA were conducted on centred and
scaled physico-chemical parameters and OTU frequencies
in replicate samples (0.2-5 um size fractions) using the
‘ADE4’ PACKAGE.
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Supporting information

Additional Supporting Information may be found in the online
version of this article at the publisher's web-site:

Fig. S1. Shallow freshwater systems sampled in this study in
April 2011.

A. Localization of the five ecosystems in the Parc Naturel
Régional de la Haute Vallée de Chevreuse, SouthWest of
Paris, France (http://www.parc-naturel-chevreuse.fr).

B. Distances as the crow flies between the sampled ponds
and brook (km). Photographs of the sites are shown on the
left.

Fig. S2. Non-metric multidimensional scaling (NMDS) plot
showing protist community composition similarities and dif-
ferences among the five ecosystems studied. MG25 and
MG25b: Mare Gabard, SR25 and SR25b: Saint Robert, EV33
and EV33c: Etang des Vallées (0.2-5 um size sample), EV34
and EV34b: Etang des Vallées (5-30 um size samples),
RSA25 and RSA25b: Sainte Anne, LC25 and LC25b: La
Claye.

Fig. S3. Approximate maximum likelihood (ML) phylogenetic
tree of partial 18S rRNA gene sequences of cryptophytes,
haptophytes, telonemids, katablepharids and centro-
heliozoans. A total of 354 unambiguously aligned positions
were used to reconstruct the tree. Two chlorophyte
sequences were used as outgroup (not shown) to root the
tree. Representative sequences of OTUs from this work are
shown in bold green. For abundant OTUs (> 0.5% reads),
their proportions in term of total number of reads and reads
from the 0.2-5 um size fraction are given within square
brackets. Statistical local support values higher than 0.5 are
shown at nodes. The scale bar represents the number of
estimated substitutions per position for a unit branch length.
Fig. S4. Approximate ML phylogenetic tree of partial 18S
rDNA sequences of stramenopiles. A total of 336 unambigu-
ously aligned positions were used to reconstruct the tree. Two
alveolate sequences were used as outgroup to root the tree.
Representative sequences of OTUs from this work are shown
in bold green. Local support values greater than 0.5 are
shown at nodes. The scale bar represents the number of
estimated substitutions per position for a unit branch length.
Fig. S5. Approximate ML phylogenetic tree of partial 18S
rRNA gene sequences of alveolates. Diloflagellate and ciliate
branches are shown collapsed. A total of 325 unambiguously
aligned positions were used to reconstruct the tree. Four
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stramenopile sequences were used as outgroup to root the
tree. Representative sequences of OTUs from this work are
shown in bold green. Local support values higher than 0.5 are
shown at nodes. The scale bar represents the number
of estimated substitutions per position for a unit branch
length.

Fig. S6. Approximate ML phylogenetic tree of partial 18S
rRNA sequences of alveolates. Branches leading to groups
other than dinoflagellates and ciliates (see Fig. S4) are
shown collapsed. A total of 325 unambiguously aligned posi-
tions were used to reconstruct the tree. Four stramenopile
sequences were used as outgroup to root the tree. Repre-
sentative sequences of OTUs from that work are shown in
bold green. Local support values greater than 0.5 are shown
at nodes. The scale bar represents the number of estimated
substitutions per position for a unit branch length.

Fig. S7. Approximate ML phylogenetic tree of 18S rDNA
partial sequences of opisthokonts. A total of 342 unambigu-
ously aligned positions were used to reconstruct the tree. Two
amoebozoan sequences were used as outgroup to root the
tree. Representative OTU sequences from our work are
shown in bold green. Local support values greater than 0.5
are shown at nodes. Scale bar represents the number of
estimated substitutions per position for a unit of branch
length.

Fig. S8. Approximate ML phylogenetic tree of partial
18S rDNA sequences of cercozoans. A total of 353
unambiguously aligned positions were used to reconstruct
the tree. Two ciliate sequences were used as an outgroup to

root the tree. Representative sequences of OTUs from this
work are shown in bold green. Local support values greater
than 0.5 are shown at nodes. Scale bar represents the
number of estimated substitutions per position for a unit
branch length.

Fig. S9. Approximate ML phylogenetic tree of partial 18S
rDNA sequences of Archaeplastida. A total of 450 unambigu-
ously aligned positions were used to reconstruct the tree. Two
haptophyte sequences were used as an outgroup to root the
tree. Representative sequences of OTUs from this work are
shown in bold green. Local support values greater than 0.5
are shown at nodes. Scale bar represents the number of
estimated substitutions per position for a unit branch length.
Fig. S10. Canonical correspondance analysis (CCA) plot. All
plots are from the same analysis as in Fig. 6, with ellipses
emphasizing the distribution of OTUs affiliated to (A)
alveolates, (B) rhizarians, archaeplastids and excavates,
(C) cryptophytes, (D) centroheliozoans, telonemids, hapto-
phytes, katablepharids and apusozoans, stramenopiles and
(E) unikonts. Projected inertia on CCA1: 34.07% and on CA:
29.77%. Black dots correspond to OTUs. Grey triangles indi-
cate the samples. SR, Saint Robert; EV, Etang des Vallées;
MG, Mare Gabard; LC, La Claye; RSA, Ru Sainte Anne.
Replicate samples are superimposed. DOC, dissolved
organic carbon; OrthoP, ortho phosphate; TDS, total dis-
solved solids.

Table S1. Number and percentage of reads assigned to dif-
ferent taxa in the five studied ecosystems. Replica samples
are labelled ‘b’.
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Table S1. Number and percentage of reads assigned to different taxa in the five studied ecosystems. Replica samples are labeled ‘b’.

Sampled ecosystem Gabard pond Saint Robert pond Etang des Vallées Sainte Anne brook La Claye pond
Size fraction 0.2 -5um 0.2 -5um 5-30 um 0.2 -5um 0.2 -5um 0.2 -5um
Sample names MG25 MG25b SR25 SR25b EV34 EV34b EV33 EV33c RSA25 RSA25b LC25 LC25b
NﬁLfZﬁZZZfiLfZZTZ: 10616 4197 42034 4506 10982 6906 17670 3947 19652 4243 11191 10605
Fungi 2958 ' 2.6 3.5 0.1 0.2 0.9 0.3 0.3 0.3 8.6 11.9 0.7 0.4
Ichthyosporea 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.0
Choanoflagellida 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Amoebozoa I Discosea 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Other Amoebozoa 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
| Metamonada 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chlorophyta 3081 4.7 7.0 0.0 3.1 5.6 3.0 21 21 3.2 2.9 0.6 0.6
i Streptophyta 115 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.3 0.3 0.2
MAST 368 0.0 0.0 0.0 0.0 0.6 0.6 0.8 0.0 0.5 0.6 0.0 0.0
Bicosoecida 757 2.3 1.2 0.0 0.1 0.5 0.2 1.6 1.0 0.0 0.0 0.4 0.2
Bacillariophyceae 8473 0.0 0.0 0.0 0.0 131 3.5 4.4 3.1 271 13.3 0.0 0.0
Oomyceta 1471 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.4 6.1 4.8 0.0 0.0
Stramenopiles Chrysophyceae 11872 6.2 3.4 8.2 2.2 14.2 12.7 14.9 13.6 59 5.1 2.9 2.0
Synurophyceae 7964 20.1 32.0 4.3 2.1 7.3 5.7 3.7 4.4 14 0.9 1.2 0.8
Labyrinthulida 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
Xanthophyceae 56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.0 0.0
Other Stram 5541 1.8 1.0 0.0 0.4 3.0 1.9 58 5.7 0.9 0.8 19.1 115
Ciliophora 23037 36.2 16.1 121 19.8 21.8 33.9 28.8 37.7 2.9 1.3 3.1 2.5
Dinoflagellata 730 3.7 4.6 0.0 0.0 0.6 0.3 0.3 0.0 0.0 0.0 0.0 0.0
Alveolata Apicomplexa 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
Perkinsea 362 0.5 0.8 0.0 0.0 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.4
Other Alveolata 1273 0.0 0.0 0.0 0.7 4.9 2.0 2.2 3.3 0.2 0.1 0.1 0.0
Cercozoa 1829 0.1 0.1 0.0 0.1 1.0 1.0 0.6 0.1 59 7.5 0.3 0.2
Haptophyta 24 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0
Cryptophyta 71564 21.9 29.9 75.2 71.4 19.1 25.3 22.8 20.0 31.7 43.7 69.9 80.7
Centroheliozoa 38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0
Katablepharida 3630 0.0 0.0 0.0 0.1 6.7 9.2 10.9 7.8 0.1 0.0 0.0 0.0
Telonemida 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Ancyromonadida 17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0
Apusomonadidae 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Uncertain 1284 0.0 0.2 0.0 0.0 0.1 0.1 0.2 0.1 4.2 5.6 1.1 0.2
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Figure S1. Shallow freshwater systems sampled in this study in April 2011.
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Fig. S2. Nonmetric Multi-Dimensional Scaling (NMDS) plot showing protist community composition
similarities and differences among the five ecosystems studied. MG25 and MG25b: Mare Gabard, SR25
and SR25b: Saint Robert, EV33 and EV33c: Etang des Vallées (0.2-5 pm size sample), EV34 and
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Figure S3. Approximate Maximum Likelyhood (ML) phylogenetic tree of partial 18S rRNA gene sequences of cryptophytes,
haptophytes, telonemids, katablepharids and centroheliozoans. A total of 354 unambiguously aligned positions were used to
reconstruct the tree. 2 chlorophyte sequences were used as outgroup (not shown) to root the tree. Representative
sequences of OTUs from this work are shown in bold green. For abundant OTUs (> 0.5% reads), their proportions in term of
total number of reads and reads from the 0.2-5 pm size-fraction are given within square brackets. Statistical local support
values higher than 0.5 are shown at nodes. The scale bar r the number of esti ituti per position for a
unit branch length.
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Figure S5. Approximate ML phylogenetic tree of partial 18S rRNA gene sequences of alveolates. Diloflagellate and
ciliate branches are shown collapsed. A total of 325 unambiguously aligned positions were used to reconstruct the
tree. Four stramenopile sequences were used as outgroup to root the tree. Representative sequences of OTUs
from this work are shown in bold green. Local support values higher than 0.5 are shown at nodes. The scale bar
represents the number of estimated substitutions per position for a unit branch length.
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Figure S9. Approximate ML phylogenetic tree of partial 18S rDNA sequences of Archaeplastida. A total of 450 unambiguously aligned positions were used
to reconstruct the tree. Two haptophyte sequences were used as an outgroup to root the tree. Representative sequences of OTUs from this work are shown in bold green
Local support values greater than 0.5 are shown at nodes. Scale bar represents the number of estimated substitutions per position for a unit branch length.
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Figure S9. Approximate ML phylogenetic tree of partial 18S rDNA sequences of excavates, apusozoans and
amoebozoans. A total of 339 unambiguously aligned positions were used to reconstruct the tree. Two bacterian
sequences were used as an outgroup to root the tree. Representative sequences of OTUs from that work are

shown in bold green. Local support values greater than 0.5 are shown at nodes. Scale bar represents the number
of estimated substitutions per position for a unit branch length.
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Figure $10. Canonical Correspondance Analysis (CCA) plot. All plots are from the same analysis as in
Fig. 6, with ellipses emphasizing the distribution of OTUs affiliated to alveolates (A), rhizarians,
archaeplastids and excavates (B), cryptophytes, centroheliozoans, telonemids, haptophytes,
katablepharids and apusozoans (C), stramenopiles (D) and unikonts (E). Projected inertia on CCA1:
34.07% and on CA: 29.77%. Black dots correspond to OTUs. Grey triangles indicate the samples.
SR, Saint Robert; EV, Etang des Vallées; MG, Mare Gabard; LC, La Claye; RSA, Ru Sainte Anne.
Replicate samples are superimposed. DOC, Dissolved Organic Carbon; OrthoP, Ortho Phosphate; TDS,

Total Dissolved Solutes.



